
RBE 3001 Lab 5 Final Report

Ashe Andrews, Sebastian Baldini, Jakub Jandus

Abstract— In this lab, the team used the combined work done
in previous labs with new knowledge about computer vision
for object detection to program the OpenManipulator-X arm
to sort colored balls in its workspace.

I. INTRODUCTION

A. Background

In previous lab exercises, the team learned skills such
as forward and inverse kinematic calculations, trajectory
generation, and overall usage of the OpenManipulator-X
robotic arm. However, the team had yet to use the camera
setup that comes with the robot. Adding camera vision to
a robotic system in an industrial setting can make a robot
more reliable, consistent, and efficient [1].

B. Motivation

The motivation of this lab was to serve as a cumulative
project meant to utilize all of the work done in previous lab
exercises this term. This lab also served as an introduction to
computer vision concepts such as image processing and color
detection. The exercise made use of the camera attachment
of the OpenManiulator-X robot setup for color detection as
part of a larger sorting task. Completion of this lab shows an
understanding of all concepts taught in the RBE 3001 course
and how to synthesize them with a robotic arm.

II. METHODS

A. Previous Work

Following procedures from Labs 2, 3, and 4, the team
calculated the forward position and velocity kinematics of
the robot and its inverse position kinematics. Figure 1 shows
the Denavit–Hartenberg frames (also called DH frames) of
the on the physical robot. Figure 2 shows the resulting DH
table as well as the direction of rotation for each joint. Figure
3 shows the inverse kinematic calculations for the robot with
the assumption that the fourth joint is a 1-DOF wrist. Finally,
Figure 4 shows the MATLAB code used to calculate the
generic Jacobian of the arm for any configuration. The
lengths in millimeters of the links the arm are as follows:

• L0 = 36.076
• L1 = 60.25
• L2 =

√
1282 + 242

• L3 = 124
• L4 = 133.4

Fig. 1. Frames of each joint of the robot assigned according to the DH
convention

Fig. 2. DH table of the robotic arm and the directions of rotation for each
joint

B. Intrinsic and Extrinsic Camera Calibration

To begin working with the camera, the team first per-
formed intrinsic camera calibration with the USB webcam
and the checkerboard. The team used MATLAB’s Camera
Calibrator app from the Image Processing Toolbox and
removed the camera from its post to take many pictures
at multiple angles for accurate calibration. The team began
with roughly 40 images of the checkerboard from various
angles and heights, making sure the whole checkerboard
was in the frame for each photo. These images were then



Fig. 3. Calculations of the inverse kinematics of the robotic arm where
the position and orientation of the end effector are known

Fig. 4. MATLAB code used to calculate the Jacobian of the robot

processed through the calibration software to start with an
initial calibration profile. The team then used the histogram
of image reprojection error to eliminate images with error
higher than two pixels; the reprojection error indicates how
well the camera calibration found the intersection of the
checkerboard squares, and a smaller pixel value indicates
the camera sees the intersections very closely to where they
actually are. After re-calibrating with the more accurate
subset of images, the team went through each image in-
dividually to verify that the calibration software recognized
the entire checkerboard and assigned the checkerboard frame
according to Figure 5. Images that showed a differently
assigned frame were removed. After this filtering process,
the team performed a final intrinsic calibration and exported
the results to a camera calibration script to be called by the
Camera class at initialization.

Fig. 5. Designated frame orientation for the checkerboard frame. Images
with a different frame orientation were rejected from calibration of the
camera

MATLAB calculates the intrinsic calibration of the camera
using the length of the squares in the checkerboard and
the coordinates of each pixel in the image. Using the
checkerboard, the software knows the distinct points at the
intersection between squares and the distances between them.
It can then use the ratio of the physical distances to the
distances in pixel coordinates to calculate the transformation
from physical world frame to camera frame.

The team then moved to extrinsic camera calibration using
provided template code. To test that the conversion from
camera frame to checkerboard frame to robot frame was
correct, the team developed a function to get the intersections
of each checker in the checkerboard as pixel coordinates.
The team then programmed the robot to convert these
pixel coordinates to robot task space coordinates using the
extrinsic calibration and move to them. After calibration, the
robot was able to move the gripper to each intersection with
acceptable tolerance.

C. Object Detection and Classification

The team then moved on to detecting the balls and their
colors. The team used the HSV color space because of
the increased variation between different colors compared
to other color space options. Increased variation meant that
colors were more distinct from one another, and therefore



they were easier to detect. Additionally, the HSV color space
provided some resiliency to changed lighting conditions.

To detect all the balls in the checkerboard, the camera
takes an image of the space, which is then undistorted
and cropped to only the checkerboard to avoid irrelevant
detections. Using HSV color thresholds, the image is masked
to contain only balls of the color of interest and then
converted to gray-scale for processing. A median filter is
applied to remove noise, and then the edges of the balls
are eroded and dilated for smoothing and filling the circle
shape. The image is then binarized, and the imfindcircles()
function is applied to find the centers of the balls. This is
done for each color to create an array of points where each
row represents balls for a given color.

The team experimented with several filtering and process-
ing sequences to see which combination most consistently
ended with a distinct and whole circle in the image. In the
final version of the image processing pipeline, the team used
the following filters/ processes on the raw camera image to
detect the balls and their colors:

1) Remove fish-eye distortion
2) Convert the image from RGB colors to HSV
3) Mask the image to focus only on the checkerboard
4) Mask the image to focus only on the ball of the selected

color using HSV thresholds
5) Convert the image to gray-scale
6) Apply a median filter to the image to remove noise
7) Erode edges in the image to remove noise around the

ball
8) Dilate edges in the image to fill in the ball
9) Binarize the image so that white pixels represent the

ball and black pixels represent everything else
Figure 6 shows the process as a flowchart alongside the
resulting images of each filter.

Fig. 6. Flowchart of the image processing pipeline for ball detection with
resulting images for each step

The x, y, and z coordinates of the center of the ball is
offset form the real world coordinates because the camera
sees the closest part of the ball and makes its calculations
based on that part of the ball. This is because the camera
is 2D and has no depth sensing. To fix this offset, the team
included the calculations done in Figure 7 in the code to
adjust coordinates involving picking up the balls. Without
this correction, the error in the x and y directions would

be equal to the ratio of the ball radius and camera height
(0.0657) multiplied by the distance in that direction of the
ball from the camera, which would be in the range of
a few millimeters depending on the ball’s location in the
checkerboard.

Fig. 7. Calculations used to determine the x and y offset of the center of
the ball from the camera image to the robot frame

D. Overall Approach

To sort the balls, the camera detects all balls on field and
categorizes them by color. The robot then sorts the balls by
color in the following order: blue, yellow, red, green, gray,
and orange. After a ball is sorted, the camera takes a new
image of the field and re-detects balls in case a ball has been
replaced or moved. To exclude sorted balls, the robot places
sorted balls in boxes off to the side. Additionally, the camera
image is masked to include only what is in the checkerboard:
since balls are sorted outside the checkerboard, they are no
longer included in the detection sequence once sorted. Figure
8 shows the flowchart of the processes done to sort all of the
balls by color.

For moving the robot arm, the team elected to use inverse
position kinematics with the interpolate jp() method. This
method was the simplest to implement and requires fewer
calculations than using trajectory generation. In Lab 4,
the team had also observed that interpolate jp() and cubic
trajectory movements were similarly smooth.

E. System Architecture

Our system’s code was split between three main files,
Robot.m, Camera.m, and labFinal.m. The Robot class in
Robot.m remained largely untouched from previous labs and



Fig. 8. Flowchart of the entire sorting process completed by the camera
and robot

contained the robot control and kinematic functions used to
move the robot when sorting the balls. The team added one
new function, appro za() for moving above a ball before
picking it up. The Camera class in Camera.m contained
provided functions for camera calibration, and the team
added several helper functions to the class for image pro-
cessing, ball detection, and coordinate manipulation. Finally,
the labFinal.m file contained the main program to detect the
balls and sort them, and it used the methods from the Robot
and Camera classes. Figure 9 shows the code structure and
describes the helper methods in each file.

Fig. 9. Class and method structure used for organizing code to complete
the lab exercise

III. RESULTS

A. Image Filtering and Object Detection

Figures 10 through 15 show the results of each step of the
image processing pipeline.

B. Object Classification in Motion

Figures 16 through 23 show the images after the robot
sorts each of seven balls.

Fig. 10. Initial cropped image of green ball on checkerboard grid

Fig. 11. Color-filtered image after passing through the median filter for
noise removal

Fig. 12. Color-filtered image after passing through an erosion and a dilation
filter

Fig. 13. Binarized image of the ball such that white space represents the
ball and black space is everything else



Fig. 14. Results of imfindcircles() being applied to the binarized image.
The outline and centroid of the ball are displayed on the image

Fig. 15. Circle overlay onto initial image of the ball. The color of the
circle matches the color of the ball that was detected

Fig. 16. Image of robot arm with balls on grid before object recognition
occurs

Fig. 17. Cropped checkerboard image with center points for each ball after
full detection sequence

Fig. 18. Cropped image after the first ball was taken with center points
for each remaining ball

Fig. 19. Cropped image after the second ball was taken with center points
for each remaining ball

Fig. 20. Cropped image after the third ball was taken with center points
for each remaining ball

Fig. 21. Cropped image after the fourth ball was taken with center points
for each remaining ball



Fig. 22. Cropped image after the fifth ball was taken with center points
for each remaining ball

Fig. 23. Cropped image after the sixth ball was taken with the center point
of the last ball

IV. DISCUSSION

A. System Architecture

The code was split into Robot.m, Camera.m and labFi-
nal.m to keep the overall structure simple and clear to those
reading the code. All the functions that involved motion
were within the Robot class. The Camera class was used
for our image recognition, object identification, and robot
frame conversion. Within labFinal.m, only functions from the
Robot and Camera classes are used. Initializing the camera
within labFinal.m is just one line, but within Camera.m
many other functions are run. This includes calibration of the
camera to remove the fish-eye effect of the lens, calculating
the position of the camera, and initializing the grid points.
These initialization functions are all done in the background,
which makes the code much neater through compartmental-
ization. Within the sorting process, getBalls() is a function
that utilizes other functions within Camera, but again these
are compartmentalized to be in the background. As a result of
the compartmentalization of code, particularly camera code,
the labFinal.m file that runs the sorting sequence is focused
and reads linearly. This makes understanding and debugging
the surface-level code much easier.

B. Color Detection

The team experimented with several combinations of dif-
ferent filters and processing techniques before choosing the
pipeline described in the Methods section. The median filter
was consistent in removing noise and did not significantly
impact the integrity of the ball’s shape. Erosion and dilation
together helped remove noise around the ball and fill in some

of the circle shape that was lost during the color filtration.
Binarizing the image allowed the team to use the pre-made
MATLAB function imfindcircles() to detect the centroid of
the ball.

When choosing colors to use for the final demonstration,
the team elected to not use black, gray, or white balls. Black
and white balls cannot be used in the team’s setup because
black and white squares are used to denote the checkerboard.
This means during calibration of the color detection, the
balls would blend in with the checkerboard, making them
impossible to detect in a way that is separable from the area
around them. In testing, we had a similar issue using gray
balls, as the shadows cast on the checkerboard by the lighting
could create gray areas in the image. These gray areas were
then mistakenly recognized as gray balls.

C. Overall Performance

Within this lab there were three major components to our
code: object detection, camera to robot frame conversion,
and robot control.

The object detection with the camera had very consistent
performance, as it was able to find all balls within frame very
consistently. This is due to the careful calibration and image
processing, which made it both responsive, for live tracking,
and reliable for objects beyond the balls: the team was also
able to use the camera for detecting a rubber duck and
a knife. Though the object detection is not always perfect,
as seen in Figure 17, which has three green balls within the
frame, but only two are recognized. This error is mitigated by
re-detecting the field after each motion in the event a ball has
been added or moved. This can be seen in Figure 18 where
the previously unrecognized ball is eventually detected.

The camera to robot frame conversion is fairly reliable, but
is prone to slight error that is largely mitigated by the size
of the gripper. The first of the two parts of the conversion is
the camera to checkerboard frame conversion: this is where
the majority of the error comes from. This error is due to
the lack of precision when measuring from the camera to
the checkerboard frame. For example, the team determined
that the camera is not exactly center to the board, but rather
has a 3mm offset. While the team was able to adjust for
the majority of the error, there is residual error. There is
also some error caused by the adjustment from the camera’s
coordinates for the balls to the true coordinates of the balls.
The other part of the conversion, checkerboard to robot
frame, is more accurate due to better measurements and the
general inability to move the checkerboard and robot base.
In comparison, the camera can be rotated, which can alter
the height and position of the lens.

Overall, the robot is able to go to any spot on the checker-
board with both a high degree of accuracy and precision,
but it tends to be slightly off of the location of a ball due
to the previously mentioned error. In practice this is largely
irrelevant due to the large size of the gripper.

The final component of the project is the robot control,
which has been extremely reliable. The team has a high
degree of control over the robot with its functions, such as



the approach function. This makes it very easy to manipulate
for this use-case. In this lab, the team primarily utilized
interpolated motion, as it was both smooth and responsive
throughout the various applications, from ball sorting to live
tracking.

V. CONCLUSION

In this lab, the team synthesized skills learned in pre-
vious labs and new computer vision skills to program the
OpenManipulator-X arm to sort colored balls. The team
revisited forward kinematics, inverse kinematics, and trajec-
tory planning to control the robot throughout the challenge.
Additionally, the team explored image processing techniques
for color detection and mathematics to navigate seamlessly
from the camera frame to the robot’s task space. This exercise
serves as a foundation for potential future work in the
robotics field working with robotic arms or computer vision
systems.

APPENDIX

A. Appendix A: Links to Lab Code and Demonstration Video

Link to code on GitHub: https://github.com/
RBE3001-A23/RBE3001_A23_Team19/releases/
tag/lab-5-final

Link to YouTube video of demonstration: https://
youtu.be/fyROhRms9YE

B. Appendix B: Table of Contribution

Ashe Sebastian Jakub
Architecture 33% 33% 34%

Coding 33% 33% 34%
Experimentation 33% 34% 33%
Documentation 60% 15% 15%
Video creation 15% 15% 60%
Result analysis 34% 33% 33%

REFERENCES

[1] “Understanding what is a robot vision system,” Techman Robot,
https://www.tm-robot.com/en/robot-vision-system/.


